Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Feng Xu, Wei-Xiao Hu, ${ }^{*}$ Wei Zhou and Chun-Nian Xia

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.117$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(4-Chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine

The title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4}$, was prepared from sodium borohydride and 3-(4-chlorophenyl)-6-methyl-1,2,4,5-tetrazine. The molecule can be considered to be homoaromatic. The tetrazine ring adopts an unsymmetrical boat conformation.

Comment

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5-tetrazine has four isomers, namely 1,2-, 1,4-, 1,6- and 3,6-dihydro-1,2,4,5-tetrazines. The 1,6-dihydro structure (Stam et al., 1982) was found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure-activity relationship of $1,2,4,5-$ tetrazine derivatives (Hu et al., 2004, 2005), we have obtained yellow prismatic crystals of (I). The structural identity of (I) was confirmed using single-crystal X-ray diffraction. The molecular structure of (I) is illustrated in Fig. 1. Selected bond lengths and angles are listed in Table 1. In the tetrazine ring, atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 4$ and N 5 are coplanar, while atoms C3 and C6 deviate from the plane by 0.320 (2) and 0.662 (3) \AA, respectively. The $\mathrm{N} 2 / \mathrm{C} 3 / \mathrm{N} 4$ and $\mathrm{N} 1 / \mathrm{C} 6 / \mathrm{N} 5$ planes make dihedral angles of 27.2 (2) and 47.5 (2) ${ }^{\circ}$, respectively, with the $\mathrm{N} 1 / \mathrm{N} 2 /$ N4/N5 plane, i.e. the tetrazine ring adopts an unsymmetrical boat conformation. Atom N1, which carries atom H1, is almost $s p^{2}$-hybridized as the angles around it add up to 358.7°. In keeping with similar situations in 3-phenyl-6-ethyl-1,6-dihydro-1,2,4,5-tetrazine (Stam et al., 1982), and 3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Counotte-Potman et al., 1981), it can be considered that the molecule is homoaromatic.

(I)

Fig. 2 shows that every molecule is involved in two hydrogen-bonding interactions (Table 2), which contribute to the formation of the crystal structure.

Experimental

The title compound was obtained by adding an 95% ethanol solution $(4 \mathrm{ml})$ of sodium borohydride (38 mg) dropwise to 3 -(4 -chlorophen-yl)-6-methyl-1,2,4,5-tetrazine ($0.2 \mathrm{~g}, 1.0 \mathrm{mmol}$) in anhydrous (4 ml) at 263 K . After evaporation of the solvent, recrystallization from diethyl
\qquad
ether-pentane (1:9) afforded the product (I) as yellow crystals. M.p. 393-394.5 K. IR (KBr, cm ${ }^{-1}$): $3441(s, \mathrm{NH}), 1634(\mathrm{C}=\mathrm{N}), 1394$ (ring), 1089 ($s, \mathrm{Ar}-\mathrm{Cl}$). A solution of (I) in anhydrous ethanol was concentrated gradually at room temperature to afford crystals, which were suitable for X-ray diffraction.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClN}_{4}$
$M_{r}=208.65$
Monoclinic, $P 2_{1} / c$
$a=9.948$ (3) \AA
$b=8.833$ (3) \AA
$c=11.420$ (3) \AA
$\beta=102.682(4)^{\circ}$
$V=979.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(A B S C O R ;$ Higashi, 1995)
$\quad T_{\min }=0.933, T_{\max }=0.966$

4749 measured reflections 2142 independent reflections 1580 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.2^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.117$
$S=1.03$
2142 reflections
133 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\left({ }_{\mathrm{A}}{ }^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.900(14)$	$2.802(15)$	$3.658(2)$	$159.3(15)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.900(14)$	$2.025(15)$	$2.922(2)$	$174.6(16)$
$\mathrm{C} 7-\mathrm{H} 7 C \cdots \mathrm{~N}^{\text {ii }}$	0.96	2.70	$3.594(3)$	156
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{~N} 2^{\text {iii }}$	0.93	2.80	$3.671(2)$	156
Symmetry codes:	(i)	$-x, y+\frac{1}{2},-z+\frac{1}{2} ;$	(ii)	$x,-y+\frac{1}{2}, z-\frac{1}{2} ;$
$-x+1,-y+1,-z+1$.				

The N1-bound H atom was found in a difference Fourier map and refined freely; $\mathrm{N} 1-\mathrm{H} 1=0.900(14) \AA$. The other H atoms were placed in calculated positions and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 (or 1.5 for methyl H atoms) times $U_{\text {eq }}$ of their parent atoms, and $\mathrm{C}-\mathrm{H}$ distances set at $0.93 \AA$ for the aromatic H atoms, $0.98 \AA$ for the methylene H atom and $0.96 \AA$ for those of the methyl group.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows, (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids.

Figure 2
A view of the molecular packing, showing two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ type hydrogen bonding interactions (dashed lines).

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Counotte-Potman, A., Van der Plas, H. C. \& Van Veldhuizen, A. (1981). J. Org. Chem. 46, 2138-2141.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, W. X., Rao, G. W. \& Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 11771181.

Hu, W. X., Shi, H. B., Yuan, Q. \& Sun, Y. Q. (2005). J. Chem. Res. 2, 91-93.
Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford, England: Elsevier.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stam, C. H., Counotte-Potman, A. D. \& Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856-2858.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

